

Unit 3 - Estimation

Confidence Interval Estimation

In this unit, you learn:

- To construct and interpret confidence interval estimates for the Population Mean, μ
 - when Population Standard Deviation σ is Known
 - when Population Standard Deviation σ is Unknown

Point and Interval Estimates

- A point estimate is a single number,
- a confidence interval provides additional information about variability

Point Estimates

We can estimate a Population Parameter		with a Sample Statistic (a Point Estimato)
		(a Point Estimate)
Mean	μ	X
Proportion	π	р

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Such interval estimates are called confidence intervals

- An interval gives a range of values:
 - Takes into consideration variation in sample statistics from sample to sample
 - Based on observations from 1 sample
 - Gives information about closeness to unknown population parameters
 - Stated in terms of level of confidence
 - Can never be 100% confident

Estimation Process

General Formula

• The general formula for all confidence intervals is:

Point Estimate ± (Critical Value)(Standard Error)

Confidence Level

- Confidence Level
 - Confidence for which the interval will contain the unknown population parameter
- A percentage (less than 100%)

Confidence Level, $(1 - \alpha)$

(continued)

- Suppose confidence level = 95%
- Also written (1 α) = 0.95
- A relative frequency interpretation:
 - In the long run, 95% of all the confidence intervals that can be constructed will contain the unknown true parameter
- A specific interval either will contain or will not contain the true parameter
 - No probability involved in a specific interval

Confidence Intervals

Compiled by: Kamarul Ariffin Mansor (2021) Source: Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.

Confidence Interval for μ (σ known)

UNIVERSITI TEKNOLOGI MARA

- Assumptions
 - Population standard deviation $\boldsymbol{\sigma}$ is known
 - Population is normally distributed
 - If population is not normal, use large sample
- Confidence interval estimate:

where \overline{X} is the point estimate

Z is the normal distribution critical value for a probability of $\alpha/2$ in each tail

 σ/\sqrt{n} $\,$ is the standard error $\,$

Finding the Critical Value, Z

Compiled by: Kamarul Ariffin Mansor (2021) Source: Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. UNIVERSITI TEKNOLOGI

MARA

 Commonly used confidence levels are 90%, 95%, and 99%

Confidence Level	Confidence Coefficient, $1-\alpha$	Z value
80%	0.80	1.28
90%	0.90	1.645
95%	0.95	1.96
98%	0.98	2.33
99%	0.99	2.58
99.8%	0.998	3.08
99.9%	0.999	3.27

Compiled by: Kamarul Ariffin Mansor (2021)

Source: Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.

Confidence Interval Estimations

Intervals and Level of Confidence

Compiled by: Kamarul Ariffin Mansor (2021) Source: Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Example

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.
- Determine a 95% confidence interval for the true mean resistance of the population.

Example

Universiti Teknologi Mara

(continued)

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.
- Solution:

$$\overline{X} \pm Z \frac{\sigma}{\sqrt{n}}$$

= 2.20 ± 1.96 (0.35/\sqrt{11})
= 2.20 ± 0.2068
1.9932 ≤ \mu ≤ 2.4068

Interpretation

- We are 95% confident that the true mean resistance is between 1.9932 and 2.4068 ohms
- Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean

Confidence Intervals

Confidence Interval for μ (σ unknown)

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, S
- This introduces extra uncertainty, since S is variable from sample to sample
- So we use the t distribution instead of the normal distribution

Confidence Interval for μ (σ unknown)

(continued)

- Assumptions
 - Population standard deviation is unknown
 - Population is normally distributed
 - If population is not normal, use large sample
- Use Student's t Distribution
- Confidence Interval Estimate:

(where t is the critical value of the t distribution with n -1 degrees of freedom and an area of $\alpha/2$ in each tail)

- The t is a family of distributions
- The t value depends on degrees of freedom (d.f.)
 - Number of observations that are free to vary after sample mean has been calculated

Degrees of Freedom (df)

Idea: Number of observations that are free to vary after sample mean has been calculated

Example: Suppose the mean of 3 numbers is 8.0

Here, n = 3, so degrees of freedom = n - 1 = 3 - 1 = 2

(2 values can be any numbers, but the third is not free to vary for a given mean)

Compiled by: Kamarul Ariffin Mansor (2021) Source: Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Student's t Distribution

Note: $t \rightarrow Z$ as n increases

Student's t Table

Compiled by: Kamarul Ariffin Mansor (2021) Source: Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. t Distribution Values

With comparison to the Z value

Confidence Level	t <u>(10 d.f.)</u>	t <u>(20 d.f.)</u>	t <u>(30 d.f.)</u>	Z
0.80	1.372	1.325	1.310	1.28
0.90	1.812	1.725	1.697	1.645
0.95	2.228	2.086	2.042	1.96
0.99	3.169	2.845	2.750	2.58
Note: t →	Z as n in	icreases		

Example

A random sample of n = 25 has X = 50 and S = 8. Form a 95% confidence interval for μ

• d.f. = n – 1 = 24, so
$$t_{\alpha/2, n-1} = t_{0.025, 24} = 2.0639$$

The confidence interval is

$$\overline{X} \pm t_{\alpha/2, n-1} \frac{S}{\sqrt{n}} = 50 \pm (2.0639) \frac{8}{\sqrt{25}}$$

$$46.698 \le \mu \le 53.302$$

Compiled by: Kamarul Ariffin Mansor (2021) Source: Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.

Ethical Issues

- A confidence interval estimate (reflecting sampling error) should always be included when reporting a point estimate
- The level of confidence should always be reported
- The sample size should be reported
- An interpretation of the confidence interval estimate should also be provided

Summary

- Introduced the concept of confidence intervals
- Discussed point estimates
- Developed confidence interval estimates
- Created confidence interval estimates for the mean (σ known)
- Determined confidence interval estimates for the mean ($\boldsymbol{\sigma}$ unknown)
- Addressed confidence interval estimation and ethical issues